Estradiol accelerates the effects of fluoxetine on serotonin 1A receptor signaling.
نویسندگان
چکیده
A major problem with current anti-depressant therapy is that it takes on average 6-7 weeks for remission. Since desensitization of serotonin (5-HT)1A receptor signaling contributes to the anti-depressive response, acceleration of the desensitization may reduce this delay in response to antidepressants. The purpose of the present study was to test the hypothesis that estradiol accelerates fluoxetine-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus (PVN) of rats, via alterations in components of the 5-HT1A receptor signaling pathway. Ovariectomized rats were injected with estradiol and/or fluoxetine, then adrenocorticotropic hormone (ACTH) and oxytocin responses to a 5-HT1A receptor agonist (+)-8-hydroxy-2-dipropylaminotetralin (8-OH-DPAT) were examined to assess the function of 5-HT1A receptors in the PVN. Treatment with estradiol for either 2 or 7 days or fluoxetine for 2 days produced at most a partial desensitization of 5-HT1A receptor signaling, whereas 7 days of fluoxetine produced full desensitization. Combined treatment with estradiol and fluoxetine for 2 days produced nearly a full desensitization, demonstrating an accelerated response compared to either treatment alone. With two days of combined treatments, estradiol prevented the fluoxetine-induced increase in 5-HT1A receptor protein, which could contribute to the more rapid desensitization. Furthermore, EB treatment for 2 days decreased the abundance of the 35 kD Gαz protein which could contribute to the desensitization response. We found two isoforms of Gαz proteins with molecular mass of 35 and 33 kD, which differentially distributed in the detergent resistant microdomain (DRM) and in Triton X-100 soluble membrane region, respectively. The 35 kD Gαz proteins in the DRM can be sumoylated by SUMO1. Stimulation of 5-HT1A receptors with 8-OH-DPAT increases the sumoylation of Gαz proteins and reduces the 33 kD Gαz proteins, suggesting that these responses may be related to the desensitization of 5-HT1A receptors. Treatment with estradiol for 2 days also reduced the levels of the G-protein coupled estrogen receptor GPR30, possibly limiting to the ability of estradiol to produce only a partial desensitization response. These data provide evidence that estradiol may be effective as a short-term adjuvant to SSRIs to accelerate the onset of therapeutic effects.
منابع مشابه
Estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the hypothalamus is independent of estrogen receptor-beta.
Estradiol regulates serotonin 1A (5-HT(1A)) receptor signaling. Since desensitization of 5-HT(1A) receptors may be an underlying mechanism by which selective serotonin reuptake inhibitors (SSRIs) mediate their therapeutic effects and combining estradiol with SSRIs enhances the efficacy of the SSRIs, it is important to determine which estrogen receptors are capable of desensitizating 5-HT(1A) re...
متن کاملINVOLVEMENT OF THE SEROTONIN SYSTEM IN SSRI-INDUCED ANTINOCICEPTION
Serotonin specific reuptake inhibitors (SSRI) may induce antinociception however, the mechanism of this effect is not clear. SSRls increase 5-HT levels in neuronal synapses and facilitate serotonergic activity. In this study, therefore, the activity of para-chlorophenylalanine (pCPA), which reduces 5-HT release, and 5- hydroxy tryptophan (5-HTP), a precursor of 5-HT, were examined on the a...
متن کاملReduced 5-HT1A- and GABAB receptor function in dorsal raphé neurons upon chronic fluoxetine treatment of socially stressed rats.
Autoinhibitory serotonin 1A receptors (5-HT(1A)) in dorsal raphé nucleus (DRN) have been implicated in chronic depression and in actions of selective serotonin reuptake inhibitors (SSRI). Due to experimental limitations, it was never studied at single-cell level whether changes in 5-HT(1A) receptor functionality occur in depression and during SSRI treatment. Here we address this question in a s...
متن کاملFluoxetine Regulates Neurogenesis In Vitro Through Modulation of GSK-3β/β-Catenin Signaling
BACKGROUND It is generally accepted that chronic treatment with antidepressants increases hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. Recently, glycogen synthase kinase-3 beta (GSK-3β)/β-catenin signaling was shown to be involved in the mechanism of how antidepressants might influence hippocampal neurogenesis. METHODS The aim of this study was ...
متن کاملFluoxetine modulates sex steroid levels in vitro
Background and aims Selective serotonin reuptake inhibitors (SSRIs) are antidepressants increasingly prescribed against depression during and after pregnancy. However, these compounds cross the placenta and are found in breast milk, thus reaching, and possibly affecting, the fetus and infant during critical developmental stages. Fluoxetine (FLX), a widely used SSRI, can interfere with estrogen ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Psychoneuroendocrinology
دوره 38 7 شماره
صفحات -
تاریخ انتشار 2013